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ABSTRACT

The equilibrium structure of homogeneous turbulent shear flow is investigated from a

theoretical standpoint. Existing turbulence models, in apparent agreement with physical

and numerical experiments, predict an unbounded exponential time growth of the tur-

bulent kinetic energy and dissipation rate; only the anisotropy tensor and turbulent time

scale reach a structural equilibrium. It is shown that if vortex stretching is accounted for

in the dissipation rate transport equation, then there can exist equilibrium solutions, with

bounded energy states, where the turbulence production is balanced by its dissipation.

Illustrative calculations are presented for a k - e model modified to account for vortex

stretching. The calculations indicate an initial exponential time growth of the turbulent

kinetic energy and dissipation rate for elapsed times that are as large as those considered

in any of the previously conducted physical or numerical experiments on homogeneous

shear flow. However, vortex stretching eventually takes over and forces a production-

equals-dissipation equilibrium with bounded energy states. The validity of this result

is further supported by an independent theoretical argument. It is concluded that the

generally accepted structural equilibrium for homogeneous shear flow with unbounded

component energies is in need of re-examination.

*Research supported by the National Aeronautics and Space Administration under NASA Contract
No. NAS1-18605 while the author was in residence at the Institute for Computer Applications in Science
and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665-5225.





1. _TRODUCTION

Homogeneous turbulent shear flow has been the subject of a variety of experimental,

computational and theoretical studies during the past four decades. The popularity of

this flow lies in the fact that it accounts for an important physical effect - the alteration

of the turbulence structure by shear - in a simplified setting unencumbered by such

complications as rigid boundaries and mean turbulent diffusion. Von Karman 1 first

proposed the problem of homogeneous shear flow which gave rise to some mathematical

studies during the 1950's (c.f. Townsend 2 and Hinze 3 for a review). It is a difficult

flow to simulate experimentally and the first tangible suggestion for its generation was

put forth by Corrsin 4. The first successful experimental realization of homogeneous

shear flow in the laboratory was achieved by Rose 5 and was followed by a series of

landmark experiments by Corrsin and co-workers 6-s. More recently, Tavoularis and

Karnik 9 and Rohr et al. l° performed more exhaustive measurements of homogeneous

shear flow shedding new light on its basic structure.

With the dramatic increase in computer capacity achieved by the late 1970's, direct

numerical simulations of homogeneous turbulent flows became possible. Rogallo 11 was

the first to conduct a direct simulation of homogeneous shear flow; the results that he

obtained were well within the range of the experiments of Tavoularis and Corrsin s. Sub-

sequently, Bardina et al. 12 performed a coarse-grid large-eddy simulation of homogeneous

shear flow and Rogers, Moin and Reynolds 13 conducted fine-grid 128 x 128 × 128 direct

simulations which further clarified its structure.

The early experiments of Rose 5 and Champagne, et al. s, which were conducted for

relatively weak shear rates and small elapsed times, seemed to indicate that the Reynolds

stresses (and, hence, the turbulent kinetic energy) asymptoted to equilibrium values. This

asymptotic state is consistent with the production-equals-dissipation equilibrium that

had been hypothesized by Townsend 2 several years earlier. However, the integral length

scales were still growing monotonically at the end of the Rose 5 and Champagne et al. 8

experiments suggesting the strong possibility that an asymptotic state had not yet been

reached. Subsequent physical experiments s-l° and direct numerical simulations 11-13, con-

ducted for stronger shear rates and larger elapsed times, confirmed this. These physical

and numerical experiments, along with alternative theoretical analyses (see Rogallo 11 and

Tavoularis14), have led to the following widely accepted physical picture of homogeneous

shear flow:



(1) the turbulent kinetic energy k and dissipation rate e grow exponentially in time

at the same rate,

(2) the anisotropy tensor bij and the dimensionless turbulent time scale S'k/e reach

equilibrium values that are relatively independent of the initial conditions and the shear

rate S.

It should be noted that Speziale and MacGiolla Mhuiris is have recently shown that

virtually all of the commonly used two-equation turbulence models and second-order

closures are consistent with this hypothetical picture of homogeneous shear flow.

An alternatlve physical picture of homogeneous shear flow is presented in this paper

which is consistent with the previously conducted physical and numerical experiments,

yet at the same time is more intuitively satisfying in that it excludes the occurrence of

unbounded energy growth. In particular, it will be shown that when vortex stretching is

accounted for in the dissipation rate transport equation, a production-equals-dissipation

equilibrium results in which t_he turbulent kinetic energy and dissipation rate eventually

asymptote to bounded values. Illustrative calculations are presented for a k - e model

suitably modified to account for vortex stretching. Consistent with physical and numeri-

cal experiments, these calculations indicate an exponential time growth of the turbulent

kinetic energy and dissipation rate for St < 30. This is the largest elapsed time considered

in any of these previous experimental studies. However, for St > 30, vortex stretching

eventually takes over causing the system to saturate and attain an equilibrium structure

with bounded kinetic energy and dissipatiom in the sections to follow] a detailed case is

made to establish that this alternative equilibrium structure of homogeneous shear flow

is a serious possibility that could have important implications for turbulence modeling

at high Reynolds numbers.

2. THEORETICAL BACKGROUND

We will consider the incompressible and isothermal turbulent flow of a viscous fluid.

The governing field equations are the Navier-Stokes and continuity equations given by

Ovi Ovi OP

--g( + - + vV2vi (1)O_j Oxi

= o (2)



where vi isthe velocityvector,P isthe modified pressure and v isthe kinematic viscosity

of the fluid.As in the usual treatments of .turbulence,the velocityand pressure willbe

decomposed intoensemble mean and fluctuatingparts,respectively:

w

vi=W+ui, P=P+p. (3)

For homogeneous shear flow,the mean velocity-gradienttensor takes the form

(0s0)- 0 0 0 . (4)
O_j 0 0 0

In direct numerical simulations of homogeneous shear flow, an initially isotropic turbu-

lence is subjected to the constant shear rate S' and its time evolution is then computed. In

laboratory experiments, an initially decaying isotropic turbulence, created downstream

of a grid, is subjected to a uniform shear rate as it evolves spatially. The two problems

are related, in an approzimate sense, by the Galilean transformation

• =_o+Uot (s)

where U_ is a characteristic mean velocity that is typically taken to be the centerline

mean velocity of the uniform shear [hence, dimensionless time St - 6'(z- Zo)/Uc].

For the remainder of this paper, we will only consider the temporally evolving version

of homogeneous shear flow, since it is the only version of this problem that is exactly

homogeneous.

In any homogeneous turbulent flow, the exact transport equations for the turbulent
1

kinetic energy k =_ iuiui and dissipation rate e -- v -_-£_t take the form 16
@zi @zi

k=p-, (6)

where

= Pos+ P,v -_ (7)

: -_'J0_--S'p'" : 2_ o_,o_,b-__, (8)

Oui Ow_ Owi
7a, v = 2v wiwj----, _ = 2v 2 (9)

_xj Oxj c3xj '

are, respectively, the production of turbulent kinetic energy, the production of dissipation

by mean strains,the production of dissipationby vortex stretching,and the destruction



of dissipation. In (8)- (9), nj - u_u_ is the Reynolds stress tensor and w - V x u is the

fluctuating vorticity vector. At this stage, we introduce the anisotropy tensor b_i defined

as

(_,_- _k6,j) (10)
b_j = 2k

which will be useful in the analysis to follow.

If we non-dimensionalize the turbulent kinetic energy, dissipation rate, and time as

follows: k e
-- 4"]_*-- e* = --, -------St,

ko ' CO

where ]coand co denote initial values, then the exact transport equation (6) for k can be

rewritten in the dimensionless form

since _o = -n2S in homogeneous shear flow. It should be noted that the ratio of

production to dissipation T'/e can be related to bn through the identity

"P Sk
-- = -2bn--. (12)

Consequently, if any two of the quantities 7_/e, b12 and Sk/e are known, the remaining

one can be computed using (12). Furthermore, since for homogeneous shear flow T'/e > 0

and Sk/e > 0, it follows from (12) that bn < 0. Physical and numerical experiments

have tended to indicate that bn and Sk/e reach equilibrium values that are relatively

independent of the initial conditions. More specifically, these experiments suggest the

results

OO

where (.)oo is the equilibrium value obtained in the limit as t -_ oo. From (11) and (12)

it follows that for t* >> 1

k* ,-_exp(%t*) (14)

where the growth rate ), is given by

oo

_ 0.14. (15)

Equations (13) and (14) then imply that for t*>> 1

c* _exp(At*) (16)



since, if k grows exponentially and Sk/e equilibrates, then e must grow exponentially at

the same rate. This constitutes an alternate derivation of the Tavoularis 14 asymptotic law

of exponential growth in shear flow. The wealth of experimental data on homogeneous

shear flow collected over the past two decades appears to be in agreement with this

hypothetical physical picture. This is evidenced by Figure 1 containing several sets of

measured k data versus non-dimensional time that was recently compiled by Rohr, et

al.lO.

In order for this structural equilibrium - with an unbounded exponential time growth

of k and e - to be valid, the higher order correlations in the dissipation rate transport

equation (7) must satisfy certain consistency conditions. When non-dimensionalized, (7)

takes the form

2wiwj_, e r-" 2v o=j o=j
i. = + ;, gVn, (17)

where Rt -- k2/ve is the turbulence Reynolds number. In deriving (17), we have made

use of the fact that e _-- vw_w_ since the turbulence is homogeneous. The first of the three

correlations

wlw2 wiwj_ 2v a-_-a--_"O_ i Oz i

appearing in (17) is bounded by the Schwarz inequality. Direct numerical simulations of

Rogers 1_ for homogeneous shear flow, as shown in Figure 2, indicate that the second of

these correlations (which is proportional to the skewness SK in an isotropic turbulence)

asymptotes fairly quickly to an apparent equilibrium value of 0.1. Hence, assuming the

equilibration of e/Sk, it follows that in order to recover the exponential growth law (16)

for _* >> 1, we must have the third of these correlations behave as

v_ _ V_t_ exp(l%t). (18)
0.1kO2 k

While (18) may appear to be consistent with the traditionally accepted scaling laws for

equilibrium turbulent flows is, it is a somewhat questionable possibility for homogeneous

shear flow where one might expect this correlation to equilibrate. In particular, this

term represents the ratio of the destruction of enstrophy to the enstrophy. The analo-

gous quantity for the turbulent kinetic energy - namely, the ratio of the "destruction of

turbulent kinetic energy" (e) to the turbulent kinetic energy (k) - does reach an equilib-

rium value for large times. Direct numerical simulations of homogeneous shear flow do

5



not support (18), although the issue is still far from settled (see Figure 3 obtained from

Rogers 17, which is not suggestive of a _ growth).

We will now consider possible alternative equilibrium states for homogeneous shear

flow. There are two such possibilities:

(1) an alternative structural equilibrium where (e/Sk)_ = 0, or

(2) a production-equals-dissipation equilibrium with bounded energy states (i.e., with

]coo < oo and coo < oo).

The former structural equilibrium where (e/Sk)oo = 0 has been shown by Speziale

and MacGiolla Mhuiris 15 to be primarily associated with solutions for k and e that

undergo a power law growth with time (i.e., for St >> 1, k ,-_ t", e ,-_ t _ where a >

_). However, these solutions are largely unstable within the context of Reynolds stress

transport models. Furthermore, at the end of all of the previously conducted physical and

numerical experiments on homogeneous shear flow, e/Sk either appeared to equilibrate to

a non-zero value or continued to grow - results that are not suggestive of an equilibrium

state where (e/Sk)oo = O. Hence, we feel that this alternative equilibrium structure is

not a strong possibility.

The second possibility - namely, the production-equals-dissipation equilibrium -

appears to contradict the physical and numerical experiments which indicate that the

turbulent kinetic energy and dissipation rate are still growing at the end of the experi-

ments (i.e., for elapsed times St as large as 28). However, a production-equals-dissipation

equilibrium wherein

(I),¢.= P_s._ + P_v..

(19)

(2o)

(with bounded values for koo, eoo and R,..) is consistent with the ensemble averaged

Navier-Stokes equations. In the following sections, it will be shown that when the vortex

stretching term is accounted for in the dissipation rate transport equation, then this

production-equals-dissipation equilibrium (with an early exponential time growth of k

and e for St < 30) becomes a serious possibility.

3. THE DISSIPATION RATE TRANSPORT EQUATION WITH VORTEX

STRETCHING

Batchelor and Townsend TM have shown that the transient behavior of the enstrophy



032-- wi03i in isotropic turbulence is governed by the equation

where

d_ 2 _ 14 3 G3 03 sK 3 03 (21)

a, defined with a negative signis the skewness of the probability density function of

to make it positive definite. In (21), R_ =- ur,_,A/v is the turbulence Reynolds number

based on the Taylor microscale and G is a function defined by

G - A4 f_o". (23)

Here, urm, is the root-mean-square of the velocity fluctuation component u, A is the

Taylor microscale derived from the two point longitudinal velocity correlation function

f(r), and fi_ is the fourth derivative of f(r) evaluated it r = 0. The first term on the

right-hand side of (21) accounts for the effect of vortex stretching and is positive definite,

while the second term is always negative and leads to the destruction of enstrophy.

Equation (21) may be converted into a transport equation for e through use of the

identity

e = v032, (24)

which is valid for any homogeneous turbulence. Since the defining equation for the

lOk
(25)

microscale may be conveniently written as

Oj 2 __

it follows that (21) can be converted to the equation

7 SK _. 7 _d (26)

Once values are obtained for SK and G, (26) may be solved together with the kinetic

energy equation

= (27)

yielding a solution for isotropic decay.

7



Batchelor and TownsendTM showed that if G has the form

3O 1

G = -q- + _ R_SK, (28)

then the solution of (26) - (27) is compatible with their experimental data showing a

power law decay of the kinetic energy, with an exponent of approximately one, for the

case of moderately large values of R_. More precisely, the substitution of (28) into (26)

yields the equation
_2

= -27, (29)

which, when combined with (27), gives rise to the exact solution

k=ko 1+ ko]

for isotropic decay (i.e., a power law decay where k ._ t-l). Apart from the specific value

of the numerical coefficient on the right-hand side of (29), which is more commonly set

to a value ranging from 1.83 - 1.92 to reflect more recent decay data 19 suggesting that

k _ t -1"1 or k _ t -_'', the form of (29) is one which forms a cornerstone for the st_dard

modeled e transport equation that is widely used in turbulence models.

In the approach of Batchelor and Townsend, the choice of G given by (28) forces the

vortex stretching term in (26) to be exactly subsumed by the action of the destruction

of enstrophy term. This assumption, as has been noted above, guarantees compatibility

with their isotropic decay data. However, it seems highly unlikely that two terms which

represent distinct physical processes would exactly counterbalance each other, especially

since the destruction of enstrophy term vanishes in the limit of zero viscosity whereas

the vortex stretching term does not. In fact, the survival of the vortex stretching term

in the limit of zero viscosity (i.e., the limit as Rt --_ oo) is crucial for the prediction of

enstrophy blow-up - a property of solutions of the Euler equation (see Lesieur2°). This

can be seen by setting u equal to zero in (21) which yields the equation

dw 2 7 _was(O)
-£--

(30)

where S(_ ) is the zero-viscosity skewness. For constant S(_ ) > 0, (30) predicts that the

enstrophy blows up at the critical time

1

7_Oo S_ -y

8



wherew_ is the initial enstrophy. Although EDQNM supports this result, a finite-time

enstrophy blow-up has not been seen in direct numerical simulations of the Euler equation

(see Lesieur 2° and Pumir and Siggia21). This means that either S(_ ) is a very small

constant or a monotonically decreasing function of time (in the former case the enstrophy

would blow-up at to >> Wo whereas in the latter case it would just grow monotonically

without bound as t _ c¢). While this issue has not been fully resolved, one thing is

clear: S(_ ) is not identically zero. If S? = 0, then (30) yields the erroneous prediction

w 2 = constant

which is not supported by direct numerical simulations or theoretical analyses of the Euler

equation (these indicate that the enstrophy grows dramatically due to vortex stretching).

The standard modeled dissipation rate equation (29) reduces to

dw 2
-0

dt

in the limit of zero viscosity and, hence, incorrectly predicts (in agreement with the

S(_ ) = 0 case) that the enstrophy is conserved. It is a simple matter to show that (28) is

equivalent to the alternative scaling

G ,,_ constant, SIC "_ R-_ 1 (31)

in the e transport equation for R_ >> 1. The scaling of G in (31) can be obtained by

making the assumption that

tP Ozj Ozj
OC--

wk_k k

(namely, by the assumption that the time scale of the destruction of dissipation is pro-

portional to the time scale of the destruction of turbulent kinetic energy). While this

scaling for G is quite reasonable, the scaling of SIC in (31) is not acceptable since it gives

rise to a vanishing skewness in the limit of infinite turbulence Reynolds numbers (or zero

viscosity). Hence, we will maintain the first part of equation (31) but we will not set S(_ )

to zero. A Taylor series expansion of SIC in the variable R_ 1 yields

sIC= + + .. (32)

where S_ °) = [OSIC/OR_]R;l=o . By substituting the first part of (31) and (32)into (26),

we obtain the alternative modeled dissipation rate equation



whereC,2 can be taken to be a constant for Rx >> 1 (in deriving (33) we have made use

of the fact that R_ z ,-_ Rt z/2 and that e3/2/x/_ _ R_/2e2/k). In the limit as S(_ ) -* 0,

the traditional modeled transport equation for e is recovered. We take C,, = 1.90,

rather than 2.0, since this value yields a power law decay in isotropic turbulence where

k ,-_ t -1"1 - a value that is more in the range of the most recent experiments TM. As

alluded to earlier, since direct numerical simulations of the Euler equation have failed to

yield finite time enstrophy blow-up, the zero viscosity skewness S(_ ) is likely to be small.

Lagrangian based simulations of the Euler equation conducted recently by Girimaji and

Pope 22 yielded values for S(_ ) that were of the order of 10 -2. Hence, for all of the

illustrative calculations of this paper, we will set

S(_ ) = 0.01

for simplicity (or course, S(_ ) could more generally be a monotonically decreasing function

of time).

In figure 4(a), a solution of (33) for isotropic decay is given for Rto= 300 (it should be

noted that the new e-transport equation with vortex stretching depends on Rto whereas

the more traditional model does not). It is clear that for this value of R_o, vortex stretch-

ing has little effect on the solution. In fact, for Rto < 10,000 - which includes virtually

all of the physical and numerical experiments that have been conducted on isotropic tur-

bulence - the differences are not major. It is only for extremely high turbulence Reynolds

numbers (i.e., for Rto> 100,000) that vortex stretching makes a major difference. For

example, for Rto= 108, the enstrophy predicted by this new model exhibits a dramatic

early time growth which is reminiscent of the prelude to enstrophy blow-up predicted by

EDQNM for large values of Rto (see figure 4(b) and figure VI- 4 of Lesieur2°).

For anisotropic homogeneous turbulent flows, (33) can be generalized to the form

7 S(_ ) e2

_= P_s + 3x/_ V/-_e] -C_,y, (34)

where _s is the production of dissipation by mean strains given by (8). In order to

achieve closure, a model for 7v, s is needed. For simple homogeneously strained turbulent

flows, it can be assumed that

P_s o¢ P (35)

which, after invoking elementary dimensional analysis, yields the model

7 e (38)
_ = C,,-_'P + 3V_ v/'_e]- C,.y,

10



where C',_ is a dimensionless constant. The model for 7_,s in (36) has been used in the

k - e model of turbulence as well as in more complex second-order closures. Its success is

largely tied to the fact that it constitutes a good approximation for plane shear flows 13'1s

- the type of flow being considered in this study. For practical calculations, C** can be

taken to be 1.45 (a value obtained from equilibrium shear flows). In the next section, we

will apply this model to homogeneous shear flow.

4. ILLUSTRATIVE CALCULATIONS

In order to illustrate the effect of vortex stretching on homogeneous shear flow, we

will present the results of calculations with a k - e model for which the Reynolds stress

tensor is modeled by

where 0 r = 0.09 is a dimensionless constant.

+ (37)
While the k - e model is somewhat

simplistic since it is based on an eddy viscosity, it was recently shown by Speziale and

MacGiolla Mhuiris is that this model is topologically equivalent to the more complex

second-order closure models for homogeneous shear flow (the deficiencies in the k - e

model only become pronounced when there are combinations of shear and rotation or

multi-dimensional strains). Hence, (37) will suffice to illustrate the qualitative changes

induced when the effect of vortex stretching on the dissipation rate is accounted for.

Equation (37) will be solved in conjunction with equations (6) and (36). The standard

k - e model is recovered in the limit as S(K°) --_ 0.

For homogeneous shear flow, the k - e model with vortex stretching yields the trans-

port equations

k = - (as)

and

C2

7 S(_)e] _ C, 2 (39)= C.kS 2+ v7 -;

which are obtained by substituting (4)into (6), (36) and (37).

For all non-zero values of S(_ ) it is a simple matter to show that the solution to (38)

and (39) converges to an equilibrium state, with bounded energies. The equilibrium

values may be found by setting the right-hand-sides of (3S)-(39) to zero, yielding the

11



results

k= - c,,)'Sko
ko 49 S(_)2Rto %

(40)

and

1±5foe

49 S(_ ) Rio \ e--_/Co -

These relations clearly indicate that kc_/ko and e_/eo have a S(_ )-2 dependence so that

the standard k - e modcl prediction of an unbounded growth of k and e is easily recovered

in the limit as S(_ ) --* 0.

Using (40) and (41) the following additional equilibrium values are also obtained for

this k - e model with vortex stretching:

,
OO -- _'C-_ _

135(c,, - c,,)'

49 S(_) 2

(43)

(44)

and

Rtao "--"

These results (which are independent of the initial conditions) differ from the values of

(Sk/e)oo = a_-_, (-'ff-_/k)oo = a_C-_, and Rt_o = o¢ obtained from the standard

k - e model where a = (C,, - 1)/(C,, - 1) _ 2. The mechanism by which the presence

of the vortex stretching term has the effect of creating bounded long time solutions lles

in its enhancement of the growth rate of c. Evidently, this increase in the growth rate

of E is accompanied by a simultaneous reduction in the production of k, thus forcing

a production-equals-dissipation equilibrium. In alternative terms, vortex stretching -

which becomes more pronounced at high turbulence Reynolds numbers since it scales as

v/_t - eventually causes homogeneous shear flow to undergo a saturation to an equilib-

rium state with bounded component energies (the values of which are set by the shear

rate and the viscosity).

We will now show that the k - e model with vortex stretching yields temporal evo-

lutions of the turbulence fields for St < 30 that are in good qualitative agreement with

previously conducted physical and numerical experiments. When non-dimensionalized,

(38)- (39) take the form

l_, = c_ Skok*' Co (45)
" _o e* S ko e *

12



;.= c,,Gsk°r + f: -c,, ¢' (46)
co 3,v/15 5#,° v -- S ko I¢*

where again we have C, = 0.09, C,, = 1.45, C, 2 = 1.90 and S(_ ) = 0.01 (the standard

k - e model is obtained by setting S(_ ) = 0). The initial conditions, which correspond

to an isotropic turbulence, are taken to be eo/Sko = 0.296 and Rt, = 300. These are

the approximate initial conditions of the large-eddy simulations of Bardina et al} 2 which

will allow us to make some direct comparisons between the model and the simulations.

Figures 5(a) and 6(a) display the short time solutions for k* and e* compared to the

large eddy simulation data. The solutions with non-zero vortex stretching are seen to

display short term exponential growth in a manner very similar to that in the standard

k - e closure. The effect of the vortex stretching term is to reduce the growth rate of

k* and e*, though initially there is a slight increase in the magnitude of e*. A view of

these solutions over a much longer time interval, as displayed in Figures 5(b) and 6(b),

reveals the dramatic effect that the vortex stretching term ultimately has on the long

term growth of k* and e*. It is seen that with the vortex stretching effect included, the

initial exponential growth rates are eventually suppressed', so that by St _ 40, k* and e*

asymptote to bounded equilibrium values.

Figures 7 and 8 show the short and long time behavior of the dimensionless ratios Sk/e

and -u_/k for the solutions obtained with and without vortex stretching. The curves in

Figures 7(a) and 8(a) give the impression that an equilibrium state for these quantities

may have been achieved by the time St ,,_ 10. However, the long time solutions reveal

that, in the case where vortex stretching effects are included, only a local maximum is

reached - further developments must occur before a true equilibrium is achieved. This

suggests that the apparent convergence of quantities such as Sk/e seen in numerical and

experimental studies, may not signify that a final equilibrium state has resulted (i.e., it

may only be a local maximum). The behavior of Sk/e shown in Figure 7(5) with vortex

stretching present is remarkably consistent with the direct simulations of Rogers et al. 13

shown in Figure 9 (i.e., the tails in the computations of Rogers et al. 13 may indicate that

an equilibrium state has not been reached).

Figure 10 provides a plot of the long time behavior of the computed turbulence

Reynolds number. It achieves an equilibrium value of approximately 5600, which is more

than eighteen times its initial value. The most significant effect of the vortex stretching

term on k* and e*, as seen in Figures 5(5) and 6(5), occurs for R_ > 4000. This confirms

the belief that vortex stretching is mostly a phenomenon associated with high turbulence

13



Reynoldsnumbers. Finally, someindication of the sensitivity of the computedsolutions
to the skewnessS(_ ) appearing in the vortex stretching term is shown in Figure 11. This

contains the time evolution of k* for a range of values of S(_); as expected, k_o increases

with decreasing values of S(_ ). Figure 12 shows the effect on k* of a change in the

initial values of eo/Sk. As would be expected on physical grounds, an increase in the

dimensionless shear rate leads to a higher equilibrium value for the turbulent kinetic

energy.

5. CONCLUSIONS

An alternative view concerning the equilibrium structure of homogeneous turbulent

shear flow has been presented based on the inclusion of the effect of vortex stretching. It

was shown that the presence of just a small amount of vortex stretching can ultimately

lead to a production-equals-dissipation equilibrium with bounded energy states. For

elapsed times S_ < 30 - which includes the largest values of St considered in any of the

previously conducted physical and numerical experiments - the introduction of a small

vortex stretching term into the standard modeled dissipation rate transport equation still

yields an exponentially growing kinetic energy and dissipation for early times. However,

since this vortex stretching term scales as v_t, it eventually becomes dominant, causing

a saturation of the system to an equilibrium state with bounded turbulent kinetic energy

and dissipation. Although this alternative physical picture of homogeneous shear flow is

contrary to the commonly accepted asymptotic laws, for which an unbounded exponential

time growth of k and e is postulated, it is a real possibility that needs to be seriously

considered in the future. New physical and numerical experiments, for larger elapsed

times St, could shed more light on the issue. The recent experiments of Tavoularis

and Karnik 9, which were conducted up to St = 28, did show some tendency of the

integral length scales to level off - a feature which, if more solidly established, would

be supportive of the existence of a production-equals-dissipation equilibrium. However,

it is possible for the kinetic energy and dissipation rate to equilibrate while the integral

length scales grow without bound (perhaps this is the more likely possibility since the

flow field is infinite).

Finally, some comments should be made concerning the implications that the results

of this paper have on turbulence modeling. Since all of the commonly used two-equation

models and second-order closures based on the turbulent dissipation rate neglect vortex

14



stretching, they predict an unbounded exponential time growth of k and e in homo-

geneousshear flow. This type of behavior has been shown to cause problems in the

calculation of certain inhomogeneous turbulent flows. The singularity in plane stagna-

tion point turbulent flow represents a prime example 23. Hence, if it is ultimately justified,

the alteration of turbulence models to yield a production-equals-dissipation equilibrium

in homogeneous shear flow via vortex stretching could make their behavior more robust

in other turbulent flows. A full resolution of this issue is only likely to come from a rig-

orous mathematical proof based on some appropriate energy method. For the meantime,

however, the results of this study clearly establish the need to re-examine this issue.
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